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The microstate of a classical-particle system is repre- tion f(I',t) by solving the Liouville equation for the per-
sented by a point in phase space spanned by coordinates afifbed system, and to evalugt®(t)) using the Schidinger
momenta of all constituent particleB=1I'(q,p). Assuming  picture.
ergodicity, the macroscopic quantities of interest such as en- The derivations of both theories specifically require that
ergy density, pressure or heat flux can be calculated from afhe equations of motion of constituent particles do not de-
ensemble(or phase spageaverage of somghase function pend explicitly on time, and therefore cannot be applied to
B(T'). Bis a function of phas#' only, and not, for example, nonautonomous systems. For a general time-dependent field
of time or of the external field. there is no steady state in the long time limit. However, if the

The ensemble averag®) can be calculated from explicit time dependence in the perturbed equations of mo-
tion is periodic, the time dependence @) will also be
periodic in the long time limit. We recently show¢8] that
the TTCF formalism can be generalized to describe the re-
sponse of such time-periodic systems by introducing the con-
cept of anextended phase spacEhe same concept can be
used to derive the Kawasaki distribution for time-periodic
in Heisenberg and Schdinger pictures, respectively, where fields.

f is the phase space probability distribution describing the The general equations of motion for hparticle system
probability of observing the system in a differential phasein a time-dependent external field are
volumeT’, I'+dI".

If we assume that the system is in equilibrium fex0 . P .
and is perturbed by a constant external figldfor t>0, the 4=, TCGIDF),  pi=F+DiI)Fe(t) —ap;, (2)
phase space distribution function changes from its equilib-
rium form f(I",0), valid fort<0, to a different formf (I",t) where « is a constraint multiplier, thermostat or ergostat,
at timet, approaching the steady state distribution functionused to extract the heat produced in the system by the dissi-
f(I',») ast—o. The ensemble averag®) changes continu- pative external field, usually the Gaussian isoking4t or
ously in time from the equilibrium valu¢B(0)), through  NoseHoover[5] thermostat. It is assumed that the external
transient valuegB(t)) approaching the steady state valuefield is periodic in time with the period off¢, so that
(B(«)), because the phase space probability densitye(t+Te)=F(t).
changes. The explicit time dependence in EQ) can be avoided by

When F, does not depend on time, evaluation of theincorporating a new variablé(t) = ¢(0)+ wt, proportional
change in{B) can be approached from either of the two to time, into Eq.(2). The new variabley is the generalization
“pictures” in Eg. (1). One method involves writing the of the “phase angle” of the trigonometric functions. The
equation of motion foXB(t)) using the Heisenberg form in system(3) does not contain explicit time dependence, but
Eq. (1) and solving it. The result is the transient time- has one additional equation,
correlation function(TTCF) expression 1] for the change

<B>:fdr B(r(t>)f<r,0)=fdr B(Df(ILY), (1)

(B(1))-(B(0)), which is a nonlinear analog of the Green- '-=&+C-(I‘)F ()

Kubo equilibrium time-correlation function. An alternative Gi=m T e )

approach, pioneered by Yamada and Kawag2kiis to de- )
rive a closed expression for the perturbed distribution func- pi=F+Di(I)Fs@)—ap;,, ¢=o.
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The state of the system in the external field at any time isor becomes—iL'(I'")t=—iL'(I'")t=iL'(I"")(—t). The
completely represented by the phaSeand the additional initial equilibrium extended phase space distribution function

coordinatee, i.e., by a pointl” =(q,p,¢) in an extended s canonical and independent of
phase space, spanned by the coordingtesomentgp, and

the phase angle. Equationg3) are autonomous, and in fact e~ BH)

have the same form as the constant field equations. Therefore f/(,0,00= ,
the system(3) has a well defined steady state under the same T f dr e~ AHo(M
circumstances as a system in constant field. ©

Although the value oB itself does not depend op ex-
plicitly, in the presence of the external fielt{t) depends on  whereH,=3;p%2m-+U(q) is the unperturbed Hamiltonian
the initial ¢(0). Therefore we shall writ@(I'") for the sake of the system,U(q) is the interaction potential, and
of generality and observe the evolution of the extended phasg=1/k,T, wherekg is the Boltzmann constant arfdis the
space functions. The value B{I'") can change in time only temperature of the system. The external field¢) starts to

because of the change of extended phase, act upon the system at=0. The above expression fot,
, does not depend op, andf’ (I, ¢,0) is uniform in¢g. How-

B(F’)=f’- JB(I") —iL"(I")B(I") 4) even because the extended phase space points with the same
or’ ' initial I'(0) and different initialp(0) follow different trajec-

tories according to the equations of motion which contain the
whereil "(I'") is the extended phase spage.iouvillean.  field F(¢), leading to differentl’(t) and ¢(t), we write
The formal solution of Eq4) can be written in terms of the Ho(I'") in the exponent of the numerator. In the denomina-
extended phase spapepropagator, epL'(I"")t], so that  tor, the ¢ dependence has been integrated out.
, o , Substituting the canonical distribution into E&) we ob-
B(I" (1) =exdiL " (I")t]B(I"(0)). tain the extended phase space distribution function at ime

The equilibrium extended phase space distribution func-

tion is independent ofg, and thereforef’(I',0)dI’’ fr L= e Ao
= (LwTg)f(I,0)dI’ de. The perturbatiorr o ¢(t)] starts at (T.et)=e
t=0 and as time progresses, thedependence of the ex- wTef dIr e~ AHotD)
tended phase space distribution functiofI'’,t) becomes
more apparent. Since the number of ensemble members in g AHolI" (-1)]
extended phase space is conserved, the chanffedan be =
described by the extended phase space Liouville equation, wTef dIe” AHoM

af, (9 . ! . ! (? ! H ’ ’ ! t

Wr,:_“ﬁ ! )” o P AOT, =exp(—ﬁf0ds IT(-9)IFd(~9)]

5
xf'(I",0), (7)

and the Liouvilleans and the extended phase spaue p

propagators can be defined in a manner analogous to thgjjhere the dissipative flud is defined in terms of the adia-
deEnlﬁong mdcon;/ent(lo)nal pha(se )spac?]. The opdergtOLon thSatic (i.e., unthermostattedrate of change of the internal
right hand side of Eq(5), —iL'(I'’), is the extended phase ener ad_ _ . :

o . . . gyHo, asHg=—J(I')F.(¢). Equation(7) is the gen-
spacgf L|ou.V|IIean. The first term in the brackets n tie eralized Kawasaki distribution function in time-dependent
Liouvillean is the extended phase space compression fact(?r

, : ; ields.
AT, Wh'Ch. does not dgpend op because thgre IS no Adiabatic systems are generally not of great interest be-
compression in the direction. The second term is the ex-

. cause the applied field causes them to heat up, and a steady

tend_ed phgss-: seaperuvnqun_. . state can never be reached. Dissipative systems following the
Smce—_lL (I'") is not epr|C|tIy time dependent, the for- equations of the forni3), wherea is the Gaussian or Nose
mal solution of Eq(5) can be written as Hoover thermostat or ergostat, are more interesting. In the
case of autonomous systems it has been sHéyif that for
Gaussian or Noskloover isokinetic systems, the expression
for the perturbed phase space distribution function still sat-
isfies Eq.(7), except that all time propagatide.g.,J(I'(t))]
is understood to be generated in the presence of the thermo-
Xexd —iL'(T")t]f"(T",0), (6)  stat[4].

The ensemble average of a phase function at tin®e
where exp—iL’(I'")t] is the extended phase spdcpropa- determined using the Heisenberg picture. It should be men-
gator. The expression on the far right side of Eg).is ob-  tioned that only the hyperplang(t), which is the solution of
tained by Dyson decomposition. the last equation in Eq3), is the ergodically consistent rep-

Let us now consider a canonical ensemble of systemgesentation of the system at timieln order to obtain the
obeying Hamiltonian equations of motion in equilibrium. For time-dependent response to a well-defined fieltich starts
such a systenh ' (I')=0, and the exponent in tfepropaga- at a defined value,), we have to evaluate the exponential

/(I t)=exg —iL ' (I")t]f'(I",0)

t
=ex;{ — jods A (T(—59))
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correction(7) to the equilibrium distribution function on dif- 0218 ———— : :

ferent planes at different times. x ; 1

Our results are tested by nonequilibrium molecular dy- 0.216 - i

namics simulation of a system of two disks with periodic C i
boundary conditions, subject to a time-dependent color field 9214 [
[8]. The disks differ by color labelsg;=(—1)", i=1,2, 0212 s
which determine the interaction of each disk with the exter- &, C

nal color fieldF.=F, sin(gy+ wt) acting in thex direction. 021 L ]

The equations of motion for>0 in extendedphase space - ]

are 0.208 - direct -

[ e bare Kawasaki §|

0.206 [ renormalized 4

:& :F+|CF Sln — . .: I L1l e e e 1

i m’ Pi i iTo e—ap;, ¢=o. 0 1 N 3 4 5

(a) t
The interactionF; between disks is characterized by the

WCA (Weeks-Chandler-Andersgpotential[9], and the sys- 0.218 F t R
tem is thermostatted using the Gaussian thermastat 0216 [ 7
E (Fi+iciFo)p 0214 K.
i=1.2 B
a= i o 0212
2 [Nl ]
i=12 P 021 -~ t=0.5 .
i e di , 0.208 - direct t=5 ]
In this work the effective diameter of the disks, the T bare Kawasaki
depth of the potential well of the corresponding Lennard- 0.206 L renormalized E
Jones potentialg, and the particle massy, are all set to [ e L L
unity. The amplitude and frequency of the color field are 0 0.2 0.4 0.6 0.8 1
chosen to bé&,=4 andw= 2. (k) o2m
The dissipative flux is given by=3c;x;, and we ob- 0.2145 e ,
served the time-dependent response of the hydrostatic pres- o 2702 direct E
sure, 0214 £ QRem=0.251 . bare Kawasaki |
02135 L renormalized I
B=P= % (Pyx+Pyy) 0.213 — —
A, 02125 | .
1 N 2 4 n2 E 5
:W<Z (%+Xini+YiFyi)>- 0.212 E
=1 02115 | 3
The simulations were done at the density 0.211 ?pmt:o i A 3
p=N/V=0.396 850 and at the temperatdre: 1.0, using the 0.2105 Eov i s NI e
fourth-order Runge-Kutta method of integration of the equa- 0 1 2 3 4 5
tions of motion with a time step oft=0.002. The simula- (©) t

tions were carried out for 2 650 000 initial phases from the
isokinetic equilibrium ensemble, for each of the 100 initial sure in the periodic color field. Both the direct simulation and the

values of¢(0), and for a.t_lme @:t<_5' Frqm each starting Kawasaki results show that the pressure oscillates with twice the

phasel’=(q;,p;), an additional s#artlng point was generatedfequency of the color field. The amplitude of the pressure oscilla-

using the time-reversal mapping’ (I') =(q; , —p;), in order  tjons changes in time from zero to the final value. The correspon-

to improve the statistics and to reduce the systematic errofience between direct simulation and the renormalized Kawasaki

This additional starting point ensures that the average initiaghethod is so good that it is difficult to distinguish the two respec-

dissipative flux is identically zero. tive curves on the scale of these graphs. The bare Kawasaki results
Figure 1 shows different views of the pressure response ifire correct only at early times.

extended phase space using direct simulation and the time-

dependent Kawasaki formula. In Fig(al all trajectories in time. Time evolution of the pressure response for five
start at the same, and are followed for five periods of the periods of color field for two different angles is shown in
color field. Figure 1b) shows the development of the re- Fig. 1(c). Although there is no final steady state in the con-
sponseP(¢(t)) with time. In the linear approximation the ventional phase space for time-periodic systems, there is a
pressure is just equal to its equilibrium value, but for strong‘steady state response” for each value @f This figure
fields it oscillates with twice the frequency of the externalshows theapproachto this “steady state” forp/27w=0 and
field, since it is even unde T. At early times the response ¢/27=0.25.

is very weak and increases in amplitude and changes its form Initially, for about one period, the direct and Kawasaki

FIG. 1. The direct simulation and Kawasaki results for the pres-
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results(called “bare Kawasaki” in the figurgsshow very cally nonlinear effect. Thus there is no possibility of a strong
good agreement. After that the “bare Kawasaki” resultslinear component of response masking a possibly weak non-
show increasing fluctuations, because the errors due to iinear component. Secondly, because of the small system
complete sampling are amplified exponentially in E@..  size(just two particles and the oscillatory nature of the ap-
The distribution function7) can also be explicitly normal- plied field, the response curves are quite complex in shape.

ized at each time, This means that the chance of “accidental” agreement be-
tween theory and experiment is exceedingly remote.
A exp(— Bl ods IT(—9)IFLo(—9)])f'(I,0) Since our calculations have verified the validity of the
fr(I.n= ' time-dependent Kawasaki theory for a system of just two
f dI’ exp(— B[uds JT(—s)IFefe(—9)]) particles, it is clear that there is no need to take the thermo-

(8) dynamic limit in order for it to be applicable.
The generalized Kawasaki theory describes the change in

The renormalized forn{referred to as “renormalized Ka- the equilibrium phase space distribution function some time
wasaki” in the figureg gives better simulation results since after the time-periodic field has been applied, by tracing
the additional factor in the denominator attenuates the largbackwards in time the phase space volume elements which
fluctuations. It can be shown that the renormalization factocome to given phase points following the new equations of
in Eq. (8) becomes exactly unity in the case of perfect sam-motion containing the field. Since the expression for the dis-
pling [4]. tribution function is exponential in form, the computer simu-

In this paper we have described a time-dependent genelation errors (caused mainly by incomplete sampling of
alization of the Kawasaki form of nonlinear response theoryphase spageincrease exponentially, making this method
For a two-particle thermostatted system which responds to eomputationally much more expensive than the direct simu-
strong time-dependent color field, our expressions agree witlation of the nonlinear response. However, when applied to
direct computation. This numerical agreement was obtainetime-independent systems, it has proven useful in deriving
for the color field induced changes in the hydrostatic presfundamental exact fluctuation relations for nonequilibrium
sure. This check is particularly convincing for at least twosteady states. We hope that the same might be true for the
reasons. First, the induced pressure changes is an intringime-dependent generalization of the Kawasaki formula.
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