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We describe a time-dependent generalization of the Kawasaki form of nonlinear response theory, and verify
the validity of our expressions against direct molecular dynamics computer simulations.
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The microstate of a classicalN-particle system is repre
sented by a point in phase space spanned by coordinate
momenta of all constituent particles,G5G(q,p). Assuming
ergodicity, the macroscopic quantities of interest such as
ergy density, pressure or heat flux can be calculated from
ensemble~or phase space! average of somephase function
B(G). B is a function of phaseG only, and not, for example
of time or of the external field.

The ensemble average^B& can be calculated from

^B&5E dG B„G~ t !…f ~G,0!5E dG B~G! f ~G,t !, ~1!

in Heisenberg and Schro¨dinger pictures, respectively, wher
f is the phase space probability distribution describing
probability of observing the system in a differential pha
volumeG, G1dG.

If we assume that the system is in equilibrium fort<0
and is perturbed by a constant external fieldFe for t.0, the
phase space distribution function changes from its equ
rium form f (G,0), valid for t<0, to a different formf (G,t)
at time t, approaching the steady state distribution funct
f (G,`) ast→`. The ensemble average~1! changes continu-
ously in time from the equilibrium valuêB(0)&, through
transient valueŝ B(t)& approaching the steady state val
^B(`)&, because the phase space probability den
changes.

When Fe does not depend on time, evaluation of t
change in^B& can be approached from either of the tw
‘‘pictures’’ in Eq. ~1!. One method involves writing the
equation of motion for̂ B(t)& using the Heisenberg form in
Eq. ~1! and solving it. The result is the transient tim
correlation function~TTCF! expression@1# for the change
^B(t)&-^B(0)&, which is a nonlinear analog of the Gree
Kubo equilibrium time-correlation function. An alternativ
approach, pioneered by Yamada and Kawasaki@2#, is to de-
rive a closed expression for the perturbed distribution fu
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tion f (G,t) by solving the Liouville equation for the per
turbed system, and to evaluate^B(t)& using the Schro¨dinger
picture.

The derivations of both theories specifically require th
the equations of motion of constituent particles do not
pend explicitly on time, and therefore cannot be applied
nonautonomous systems. For a general time-dependent
there is no steady state in the long time limit. However, if t
explicit time dependence in the perturbed equations of m
tion is periodic, the time dependence of^B& will also be
periodic in the long time limit. We recently showed@3# that
the TTCF formalism can be generalized to describe the
sponse of such time-periodic systems by introducing the c
cept of anextended phase space. The same concept can b
used to derive the Kawasaki distribution for time-period
fields.

The general equations of motion for anN-particle system
in a time-dependent external field are

q̇i5
pi

m
1Ci~G!Fe~ t !, ṗi5Fi1Di~G!Fe~ t !2api , ~2!

where a is a constraint multiplier, thermostat or ergost
used to extract the heat produced in the system by the d
pative external field, usually the Gaussian isokinetic@4# or
Nosé-Hoover @5# thermostat. It is assumed that the extern
field is periodic in time with the period ofTe , so that
Fe(t1Te)5Fe(t).

The explicit time dependence in Eq.~2! can be avoided by
incorporating a new variable,w(t)5w(0)1vt, proportional
to time, into Eq.~2!. The new variablew is the generalization
of the ‘‘phase angle’’ of the trigonometric functions. Th
system~3! does not contain explicit time dependence, b
has one additional equation,

q̇i5
pi

m
1Ci~G!Fe~w!,

~3!

ṗi5Fi1Di~G!Fe~w!2api , ẇ5v.
2624 © 1998 The American Physical Society
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The state of the system in the external field at any time
completely represented by the phaseG and the additional
coordinatew, i.e., by a pointG85(q,p,w) in an extended
phase space, spanned by the coordinatesq, momentap, and
the phase anglew. Equations~3! are autonomous, and in fac
have the same form as the constant field equations. There
the system~3! has a well defined steady state under the sa
circumstances as a system in constant field.

Although the value ofB itself does not depend onw ex-
plicitly, in the presence of the external fieldG(t) depends on
the initial w~0!. Therefore we shall writeB(G8) for the sake
of generality and observe the evolution of the extended ph
space functions. The value ofB(G8) can change in time only
because of the change of extended phase,

Ḃ~G8!5Ġ8•
]B~G8!

]G8
5 iL 8~G8!B~G8!, ~4!

where iL 8(G8) is the extended phase spacep Liouvillean.
The formal solution of Eq.~4! can be written in terms of the
extended phase spacep propagator, exp@iL8(G8)t#, so that

B„G8~ t !…5exp@ iL 8~G8!t#B„G8~0!….

The equilibrium extended phase space distribution fu
tion is independent ofw, and therefore f 8(G8,0)dG8
5(1/vTe) f (G,0)dG dw. The perturbationFe@w(t)# starts at
t50 and as time progresses, thew dependence of the ex
tended phase space distribution functionf 8(G8,t) becomes
more apparent. Since the number of ensemble membe
extended phase space is conserved, the change inf 8 can be
described by the extended phase space Liouville equatio

] f 8

]t U
r8

52F S ]

]G8
•Ġ8D1Ġ8•

]

]G8G f 8[2 iL 8~G8! f 8,

~5!

and the Liouvilleans and the extended phase spacef and p
propagators can be defined in a manner analogous to
definitions in conventional phase space. The operator on
right hand side of Eq.~5!, 2 iL 8(G8), is the extended phas
spacef Liouvillean. The first term in the brackets in thef
Liouvillean is the extended phase space compression fa
L8(G), which does not depend onw because there is n
compression in thew direction. The second term is the e
tended phase spacep Liouvillean.

Since2 iL 8(G8) is not explicitly time dependent, the for
mal solution of Eq.~5! can be written as

f 8~G8,t !5exp@2 iL 8~G8!t# f 8~G8,0!

5expF2E
0

t

ds L8„G~2s!…G
3exp@2 iL 8~G8!t# f 8~G8,0!, ~6!

where exp@2iL8(G8)t# is the extended phase spacef propa-
gator. The expression on the far right side of Eq.~6! is ob-
tained by Dyson decomposition.

Let us now consider a canonical ensemble of syste
obeying Hamiltonian equations of motion in equilibrium. F
such a systemL8(G)[0, and the exponent in thef propaga-
is
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tor becomes2 iL 8(G8)t52 iL 8(G8)t5 iL 8(G8)(2t). The
initial equilibrium extended phase space distribution funct
is canonical and independent ofw,

f 8~G,w,0!5
e2bH0~G8!

vTeE dG e2bH0~G!

,

whereH05S ipi
2/2m1U(q) is the unperturbed Hamiltonian

of the system, U(q) is the interaction potential, and
b51/kBT, wherekB is the Boltzmann constant andT is the
temperature of the system. The external fieldFe(w) starts to
act upon the system att50. The above expression forH0
does not depend onw, and f 8(G,w,0) is uniform inw. How-
ever, because the extended phase space points with the
initial G~0! and different initialw~0! follow different trajec-
tories according to the equations of motion which contain
field Fe(w), leading to differentG(t) and w(t), we write
H0(G8) in the exponent of the numerator. In the denomin
tor, thew dependence has been integrated out.

Substituting the canonical distribution into Eq.~6! we ob-
tain the extended phase space distribution function at timt,

f 8~G,w,t !5eiL 8~2t !
e2bH0~G8!

vTeE dG e2bH0~G!

5
e2bH0@G8~2t !#

vTeE dGe2bH0~G!

5expS 2bE
0

t

ds J@G~2s!#Fe@w~2s!# D
3 f 8~G8,0!, ~7!

where the dissipative fluxJ is defined in terms of the adia
batic ~i.e., unthermostatted! rate of change of the interna
energyH0 , asḢ0

ad[2J(G)Fe(w). Equation~7! is the gen-
eralized Kawasaki distribution function in time-depende
fields.

Adiabatic systems are generally not of great interest
cause the applied field causes them to heat up, and a st
state can never be reached. Dissipative systems following
equations of the form~3!, wherea is the Gaussian or Nose´-
Hoover thermostat or ergostat, are more interesting. In
case of autonomous systems it has been shown@6,7# that for
Gaussian or Nose´-Hoover isokinetic systems, the expressi
for the perturbed phase space distribution function still s
isfies Eq.~7!, except that all time propagation@e.g.,J„G(t)…#
is understood to be generated in the presence of the the
stat @4#.

The ensemble average of a phase function at timet is
determined using the Heisenberg picture. It should be m
tioned that only the hyperplanew(t), which is the solution of
the last equation in Eq.~3!, is the ergodically consistent rep
resentation of the system at timet. In order to obtain the
time-dependent response to a well-defined field~which starts
at a defined valuew0!, we have to evaluate the exponenti
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correction~7! to the equilibrium distribution function on dif
ferentw planes at different times.

Our results are tested by nonequilibrium molecular d
namics simulation of a system of two disks with period
boundary conditions, subject to a time-dependent color fi
@8#. The disks differ by color labels,ci5(21)i , i 51,2,
which determine the interaction of each disk with the ext
nal color fieldFe5F0 sin(w01vt) acting in thex direction.
The equations of motion fort.0 in extendedphase space
are

q̇i5
pi

m
, ṗi5Fi1 iciF0 sin w2api , ẇ5v.

The interactionFi between disks is characterized by t
WCA ~Weeks-Chandler-Andersen! potential@9#, and the sys-
tem is thermostatted using the Gaussian thermostata,

a5

(
i 51,2

~Fi1 iciFc!pi

(
i 51,2

pi
2

.

In this work the effective diameter of the disks,s, the
depth of the potential well of the corresponding Lenna
Jones potential,«, and the particle massm, are all set to
unity. The amplitude and frequency of the color field a
chosen to beF054 andv52p.

The dissipative flux is given byJ5S ici ẋi , and we ob-
served the time-dependent response of the hydrostatic p
sure,

B[P5
1

2
~Pxx1Pyy!

5
1

2V K (
i 51

N S pxi
2 1pyi

2

m
1xiFxi1yiFyiD L .

The simulations were done at the dens
r5N/V50.396 850 and at the temperatureT51.0, using the
fourth-order Runge-Kutta method of integration of the eq
tions of motion with a time step ofdt50.002. The simula-
tions were carried out for 23650 000 initial phases from th
isokinetic equilibrium ensemble, for each of the 100 init
values ofw~0!, and for a time 0,t,5. From each starting
phaseG5(qi ,pi), an additional starting point was generat
using the time-reversal mappingMT(G)5(qi ,2pi), in order
to improve the statistics and to reduce the systematic e
This additional starting point ensures that the average in
dissipative flux is identically zero.

Figure 1 shows different views of the pressure respons
extended phase space using direct simulation and the t
dependent Kawasaki formula. In Fig. 1~a! all trajectories
start at the samew0 and are followed for five periods of th
color field. Figure 1~b! shows the development of the re
sponseP„w(t)… with time. In the linear approximation th
pressure is just equal to its equilibrium value, but for stro
fields it oscillates with twice the frequency of the extern
field, since it is even underMT. At early times the respons
is very weak and increases in amplitude and changes its f
-

ld

-

-

es-

-

l

r.
al

in
e-

g
l

rm

in time. Time evolution of the pressure response for fi
periods of color field for two different angles is shown
Fig. 1~c!. Although there is no final steady state in the co
ventional phase space for time-periodic systems, there
‘‘steady state response’’ for each value ofw. This figure
shows theapproachto this ‘‘steady state’’ forw/2p50 and
w/2p50.25.

Initially, for about one period, the direct and Kawasa

FIG. 1. The direct simulation and Kawasaki results for the pr
sure in the periodic color field. Both the direct simulation and t
Kawasaki results show that the pressure oscillates with twice
frequency of the color field. The amplitude of the pressure osci
tions changes in time from zero to the final value. The corresp
dence between direct simulation and the renormalized Kawa
method is so good that it is difficult to distinguish the two respe
tive curves on the scale of these graphs. The bare Kawasaki re
are correct only at early times.



lts

-

-
e
rg
to
m

n
ry
to
w
ne
es
o

in

ng
on-
tem
-
pe.

be-

e
wo

o-

e in
e

ing
hich
of
is-

u-
of
d
u-
to

ing
m
the

PRE 58 2627BRIEF REPORTS
results~called ‘‘bare Kawasaki’’ in the figures! show very
good agreement. After that the ‘‘bare Kawasaki’’ resu
show increasing fluctuations, because the errors due to
complete sampling are amplified exponentially in Eq.~7!.
The distribution function~7! can also be explicitly normal
ized at each timet,

f r8~G8,t !5
exp~2b*0

t ds J@G~2s!#Fe@w~2s!# ! f 8~G8,0!

E dG8 exp~2b*0
t ds J@G~2s!#Fe@w~2s!# !

.

~8!

The renormalized form~referred to as ‘‘renormalized Ka
wasaki’’ in the figures! gives better simulation results sinc
the additional factor in the denominator attenuates the la
fluctuations. It can be shown that the renormalization fac
in Eq. ~8! becomes exactly unity in the case of perfect sa
pling @4#.

In this paper we have described a time-dependent ge
alization of the Kawasaki form of nonlinear response theo
For a two-particle thermostatted system which responds
strong time-dependent color field, our expressions agree
direct computation. This numerical agreement was obtai
for the color field induced changes in the hydrostatic pr
sure. This check is particularly convincing for at least tw
reasons. First, the induced pressure changes is an intr
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cally nonlinear effect. Thus there is no possibility of a stro
linear component of response masking a possibly weak n
linear component. Secondly, because of the small sys
size ~just two particles! and the oscillatory nature of the ap
plied field, the response curves are quite complex in sha
This means that the chance of ‘‘accidental’’ agreement
tween theory and experiment is exceedingly remote.

Since our calculations have verified the validity of th
time-dependent Kawasaki theory for a system of just t
particles, it is clear that there is no need to take the therm
dynamic limit in order for it to be applicable.

The generalized Kawasaki theory describes the chang
the equilibrium phase space distribution function some timt
after the time-periodic field has been applied, by trac
backwards in time the phase space volume elements w
come to given phase points following the new equations
motion containing the field. Since the expression for the d
tribution function is exponential in form, the computer sim
lation errors ~caused mainly by incomplete sampling
phase space! increase exponentially, making this metho
computationally much more expensive than the direct sim
lation of the nonlinear response. However, when applied
time-independent systems, it has proven useful in deriv
fundamental exact fluctuation relations for nonequilibriu
steady states. We hope that the same might be true for
time-dependent generalization of the Kawasaki formula.
-
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